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Toward Semi-Quantitative Modeling of 
SNPSD Physics

• Why bother?
– Optimized device design requires the ability to 

predict response in different geometries, bias 
conditions, photon energies

• Metrics for Comparison:
– PCR curves: energy dependence, shape
– Intrinsic Jitter: energy and bias dependence
– Relative Latency: energy and bias dependence
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Model: TDGL + Electrothermal Equations

D. Vodolazov, Phys. Rev. Appl., 7, 034014 (2017). 
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• Solves the time evolution of Order Parameter (Δ), Electric Potential 
(𝜑), Temperatures (𝑇!, 𝑇"#)

−𝜎6𝛻3𝜑 = −𝑑𝑖𝑣 𝚥+7+ Current Conservation

Modified Time-Dependent Ginzburg-Landau Equations (TDGL)

2 Temperature Electrothermal Equations



Model Predictions

• Qualitatively consistent 
with previous literature
– Detection energy shifts 

from ‘Bell’ to ‘W’ as bias 
current decreases

• Parameters: 
W	=	100 nm
𝑇, = 8.65 𝐾
𝑑 = 7 𝑛𝑚
𝜌-. = 587.5 Ω-.
𝑇-/0 = 4 𝐾
𝜏12 𝑇, = 16 𝑝𝑠 (10𝐾/8.65𝐾)3= 24.7 𝑝𝑠
𝜏1-, = 25 𝑝𝑠
𝐷 = 0.5 𝑐𝑚4/𝑠
𝐼512 0 ~ 33.4 µ𝐴



Importance of Detection Latency
• Formulation using standard TDGL equations predicts 

latency difference much shorter than observed 
experimentally



Generalized TDGL Equations
• Extends the standard TDGL equations to allow 

for finite energy gap
– Includes scattering parameter which modifies the 

rate of order parameter evolution

• We retain the modifying terms added by Vodolazov (2017)
Inelastic scattering time

Watts-Tobin et al., J. Low Temp. Phys. 42, 459 (1981)
Kopnin, Theory of Nonequilibrium Superconductivity (2001)

Time 
evolution 
scale factor
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1-Dimensional Model
• Neglects 2D effects in favor of understanding the timescale of 

order parameter suppression during detection
• ‘Hotbelt’ initial conditions
• Deterministic evolution based on initial conditions
• Jitter caused by Fano fluctuations

Allmaras et al. arXiv:1805.00130

Threshold

Increasing IB

Simulated Voltage Traces Simulated Latency with Fit

Increasing Photon Energy
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1-Dimensional Model

Korzh et al. arXiv:1804.06839
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1-Dimensional Model

Korzh et al. arXiv:1804.06839

Histogram Comparison
Latency Comparison

PCR ComparisonLatency Comparison – Scattering Time

𝜏11 𝑇, = 10 𝑝𝑠

𝝉𝒆𝒆 𝑻𝒄 = 𝟓 𝒑𝒔

𝜏11 𝑇, = 0 𝑝𝑠

• Introduction of latency + Fano
fluctuations qualitatively describes 
all observed behavior in narrow 
devices

• 1D model fails over a more 
extended range of photon energies

• 1D model fails for wider nanowires



2-Dimensional Model
• Vortex formation and motion

Lower Energy – Slower Detection Higher Energy – Faster Detection

Near Center

Near Edge



120 nm Wide Device: Model Results

• Generalized TDGL 
predicts correct latency 
order of magnitude

• Inadequate match to 
experimental PCR
– Additional structure 

appears in simulation 
due to 2D effects



120 nm Wide Device: Model Results
• Correct qualitative trend of 

PCR curves:
– Narrowing transition for 

increased energy,
– Broadening for extremely 

high energy (UV)
• Predicts ‘shoulder’ in high 

energy jitter histogram for 
low IB

Korzh et al. arXiv:1804.06839

Increasing Energy

Decreasing IB

12 μA18 μA



Concluding Remarks
• Experimentally able to measure intrinsic jitter, 

and relative latency, providing information on 
the timescale of detection

• Model captures qualitative behavior: PCR 
trends, jitter histogram shape

• Generalized TDGL matches timescale relative 
latency, unlike the standard TDGL model

• Successful microscopic model must predict 3 
metrics: PCR, timing jitter, and relative latency
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Sources of Timing Jitter

• Noise Jitter – electrical noise combined
with finite slew rate leads to timing
uncertainty

• Geometric Jitter – different propagation
delays of electrical signal along length of
nanowire based on absorption site

• Inhomogeneity Induced Jitter – latency
changes due to differing nanowire
properties at different locations

• Fano Fluctuations – latency changes
based on the energy retained in the
nanowire during detection process

• Transverse Coordinate Jitter – latency
changes with the absorption site along
transverse width of nanowire

• Additional Fluctuations – fluctuations
during the detection event may influence
the time of vortex/phase slip entry Zhao et al, Nat. Photonics 11, 247 (2017)

Timing Jitter: Uncertainty in the arrival time of a 
detected photon



Zhao et al, Nat. Photonics 11, 247 (2017)

Sources of Timing Jitter

• Noise Jitter – electrical noise combined
with finite slew rate leads to timing
uncertainty

• Geometric Jitter – different propagation
delays of electrical signal along length of
nanowire based on absorption site

• Inhomogeneity Induced Jitter – latency
changes due to differing nanowire
properties at different locations

• Fano Fluctuations – latency changes
based on the energy retained in the
nanowire during detection process

• Transverse Coordinate Jitter – latency
changes with the absorption site along
transverse width of nanowire

• Additional Fluctuations – fluctuations
during the detection event may influence
the time of vortex/phase slip entry

Timing Jitter: Uncertainty in the arrival time of a 
detected photon

Engineering 
Limitations

Intrinsic Device 
Physics Limitations



Experimental Approach
• Cosmic Microwave 

Technology CITLF1 & CITLF3
– Noise temperature: < 6 K 
– Gain: ~40 dB
– 4 K operation

• 5 μm nanowire length
– Geometric jitter < 1 ps

• Free space coupling to 
eliminate dispersion in fiber 
which broadens optical pulse

CITLF1

Korzh et al. arXiv:1804.06839



Experimental Setup
• Doubling crystals allow measurement of relative delay between 

two photon energies



Results: Intrinsic Jitter
• Energy and operating temperature dependence of 

jitter suggests effects intrinsic to the detection 
process dominate the jitter

Korzh et al. arXiv:1804.06839
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• Energy and operating temperature dependence of 

jitter suggests effects intrinsic to the detection 
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● 2.7 ps FWHM Jitter @ λ = 400 nm

● 4.6 ps FWHM Jitter @ λ = 1550 nm

Korzh et al. arXiv:1804.06839



Results: Relative Latency

• Relative latency measured for 1550/775 nm 
energies for 60 to 120 nm widths
– Range of relative latency is independent of width

PCR and Relative Latency – 1550 nm / 775 nm

Korzh et al. arXiv:1804.06839



Results: Relative Latency

• Addition of 1064/532 
nm pair shows a 
shorter latency 
difference compared to 
1550/775

• Qualitative connection 
between PCR, jitter, and 
latency shapes

100 nm Wide NbN

1064/532 nm
1550/775 nm

1550 nm
775 nm

532 nm
1064 nm



Model: Stages of Detection

Allmaras et al. arXiv:1805.00130



Model: Stages of Detection

Allmaras et al. arXiv:1805.00130

• Simplifying Assumptions:
– All fluctuations occur during downconversion (Fano fluctuations) resulting 

in different amounts of energy deposited in the superconductor
– Ignores cascade/thermalization jitter
– Ignores fluctuations during suppression of superconductivity
– Ignores inhomogeneity in the nanowire


